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Abstract— An analysis of the HRV during decreases in the
amplitude fluctuations of PPG (DAP) events, and their utility in
OSAS screening is presented. The overall data set used in the
study includes the polysomnographic records of 21 children.
DAP events were automatically detected by an algorithm based
on the envelope attenuations of the PPG. DAP events were
classified as apneic or non apneic by a linear discriminant
analysis. The features used by the linear discriminant come
from the temporal and spectral parameters of the heart rate
obtained by Smooth Pseudo Wigner Ville Distribution. Two
indexes were defined: the number of DAP events per hour
ratio rDAP and the number of apneic DAP events per hour
ratio raDAP. Results show a 12% increase in accuracy for raDAP

with respect to rDAP in classifying 1 hour polysomnographic
segments, reaching values of 72.7% and 80% for sensitivity
and specificity, respectively. As for subject classification, the
improvement in accuracy is 6.7% obtaining values of 87.5% and
71.4% for sensitivity and specificity respectively. These results
suggest that the combination of DAP and HRV could be an
alternative for sleep apnea screening with the added benefit of
low cost and simplicity.

I. INTRODUCTION

Obstructive Sleep Apnea Syndrome (OSAS) is one of the

most common sleep pathologies with high prevalence in the

general population, as high as 4% in men, 2% in women

and 3% in children. Generally, sleep apnea is undiagnosed

since pain symptoms do not appear and patients not attain

for medical aid. The most common sleep apnea indicators

are daily sleepiness, irritability, tiredness, low concentration

and impaired learning. Those factors generally produce more

serious consequences such as social problems and job and

traffic accidents. In addition, OSAS produces hyperactivity

and low capacity to attend mental tasks during childhood [1].

Severe OSAS generates diurnal hypertension and much more

cardiovascular health implications that cause the decease [2].

OSAS consists in an interruption of the airflow to the

lungs produced by an upper airways occlusion. Then blood

oxygen goes down across time and mechanical respiratory

efforts are intensified in order to reopen upper airways. If

these efforts are not sufficient and hypercapnia level is dan-

gerous, an arousal is generated to reactive all the peripheral
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systems and the respiration is restored. This episode could

occur hundreds of times in a single night producing serious

health implications [3]. The open-close cycle in the upper

airways produces a regular oscillatory state of pheripheral

systems such as cardiac and vascular. For instance, heart

rate decrements during apnea and increases during restore

breathing. While vascular system presents vasoconstriction

during apnea and vasodilatation after apnea.

Polysomnography (PSG) is the gold standard procedure

for sleep apnea diagnosis. PSG consists in an overnight

recording of different electrophysiological signals. The ac-

quisition and analysis of those signals requires human expe-

rience and specialized equipment. The last requirements and

the reduced number of sleep centers makes sleep diagnosis

a very expensive procedure.

In the last decade, application of different techniques for

home sleep apnea monitoring has been extensively devel-

oped. Some studies have shown that photopletysmography

signal (PPG) has useful information about the vascular mech-

anism for detecting sleep apnea [4]. PPG is a measurement of

easy acquisition and provides a measure of the tissue blood

volume, which is tie related to arterial vasoconstriction or

vasodilatation. These vascular oscillations are generated by

autonomic nervous system (ANS) and modulated by the heart

cycle. Particularly during apnea, vasocontriction occurs [5]

and it is reflected in the PPG signal by a decrease in the

fluctuation of the signal amplitude (DAP). However, not all

DAP events are related to pathologic respiration (apnea) and

it seems that photoplestimography signal is sensible to other

events that generate vascular activations [6].

Another electro-physiological signal very broadly studied

for apnea diagnosis is the heart rate variability (HRV).

HRV exhibits frequency components from 0 to 0.5 Hz,

which are associated to the ANS branches. The frequency

components between 0.15 and 0.5 Hz represent the vagal

tone, frequencies in this band are known as high frequency

components (HF). Frequencies from 0.04 to 0.15 Hz mani-

fest the activation of both parasympathetic and sympathetic

nervous and these are labeled low frequency components

(LF). Finally, frequencies between 0.0033 and 0.04 give

information of the slow processes such as thermoregulation.

In a previous study [7] the sympatho-vagal balance was

analysed during DAPs related and not related to airflow

reductions, oxygen saturation and not clear apnea episodes

in normal and pathologic children. The results showed an

increase on sympathetic activity during DAP events which

is deeper in case of association with apnea therefore this

suggest that the combination of both measures could offer
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interesting results in terms of classification performance.

The aim of this study is to evaluate if HRV analysis

improve the utility of PPG signal in sleep apnea detection by

distinguishing DAP episodes associated to apnea from those

that are not. So the combination of DAP and HRV could be

an alternative for sleep apnea screening with added benefit

of low cost and simplicity.

II. METHODOLOGY

A. Data

This study includes the records of 21 children (11 boys, 10

girls) whose mean age was 4.47±2.04 (mean±S.D.) years.

The PSG registers were acquired in Miguel Servet Chil-

dren’s Hospital, Zaragoza, Spain, according to the standard

methods defined by American Thoracic Society [8], using a

commercial digital polygraph (EGP800, Bitmed). There were

recorded six EEG channels, two electro-oculogram channels,

a chin electromyogram channel, two ECG channels, air flow

(oronasal thermocoupler), and respiratory plethysmography,

with transducers placed around the chest and abdomen.

PPG and arterial oxygen saturation (SaO2) were recorded

continuously by pulse oximetry (COSMO ETCO2/SpO2

Monitor Novametrix, Medical Systems). All of the signals

were stored at a sampling rate of 100 Hz, except ECG

channels whose sampling rate was 500 Hz. The PSG data

were scored manually following standard procedures used

to discriminate children suffering from OSAS (10 children)

from those who are not (11 children).

B. DAP events detection

PPG signal was analyzed using the method described in [4]

for DAP detection. This detector is based on a preprocessor

stage which suppress the mean, an envelope detection using

root mean square technique and a decision rule based on

an adaptive threshold. The detector also includes an artifact

detector stage based on Hjorth parameters, see figure 1.

C. HRV analysis

A HRV signal processing analysis was carried out in order

to obtain several time and frequency indexes to study their

value for discriminate between apneic and non-apneic DAP

events.

Previous to QRS detection, we implemented a preprocess-

ing. Nonlinear filtering technique was used for removal of the

powerline interference [9]. A wavelet-based ECG delineator

[10] was used for QRS detection. After that, a ECG signal

spline interpolation around each QRS detection was carried

out to increase resolution in time of the fiducial point up to

an equivalent sampling rate of 2000 Hz. An anomalous beat

exclusion rule [11] was applied in order to determine normal

PPG
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Fig. 1. DAP Detector diagram.

beats which were used for the inverse interval function (IIF)

generation used in HRV.
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Where tk represent the beat location for every kth beat. Since

du
IIF
(t) represent unevenly sampled signal, it is interpolate

by cubic splines to become evenly sampled signal dIIF(n)
so classical spectral analysis can be done. To analyze the

spectral parameters of the HRV in a time-frequency plane we

used the Smooth Pseudo Wigner-Ville Distribution Sx(t, f),
since this heart rhythm signal is clearly non stationary. This

distribution show high time and frequency resolution and

is characterized by an independent smoothing, in time and
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2
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PVLF, PLF and PHF indexes are computed as the power in

the VLF (0.0033-0.04), LF (0.04-0.15 Hz) and HF (0.15-0.5
Hz) bands respectively, as well as their normalized versions

with respect to the total power PVLFn
, PLFn

and PHFn
and the

low to high frequency ratio RLF/HF.

D. Features Set

In order to quantify the evolution of autonomic variations

when a DAP event is associated or not associated to apnea,

four time windows were defined in specific time intervals

related to DAP events onset. Figure 2 shows a typical

example of the mean dIIF sequences when DAP is related

or not related to an apneic episode, as well as the windows

defined in relation to DAP event. Time 0 s is assigned to DAP

onset. The time windows are defined as follows: a) Reference

window (wr) is located 15 s previous to the DAP event onset

with a duration of 5 s. b) DAP episode window (wd) is found

two seconds before the DAP onset and lasting five seconds

c) Post DAP event window (wp) located 15 seconds after

DAP onset and lasting 5 seconds d) Global window (wg)

starting at 20 seconds previous to the DAP onset and lasting

40 seconds and containing the others windows.
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Fig. 2. dIIF mean ± S.D. for apneic and non-apneic DAP events. Analysis
windows (r reference, d DAP, p post-event). Dashed line at reference time
indicate DAP onset.
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They were extracted a series of features in order to select

a set of them that could provide separation between apneic

and non apneic DAP events. The set of features is formed by

the mean and the variance within the four different windows

(wr, wd, wp and wg) referred to the DAP detection of

dIIF, PLFn
, PHFn

, RLF/HF indexes. In addition, for each index

the difference between reference and DAP episode window

as well as between reference and post event window was

computed. In order to reduce the biovariability in dIIF indexes,

those were normalized by subtracting the mean value and

dividing by the variance of the segment centered at the DAP

event onset and lasting 5 minutes. Spectral indexes were

normalized with respect to the total power. A total of 34

features were extracted.

E. Classifier

A linear discriminant analysis was used to separate be-

tween DAP events related and not related to apnea episodes

(Ga and Gn). Let yi = [y1i, y2i, ..., ydi] be a row vector with

d values where each column represents a feature value from

ith DAP. And suppose we are interesting to assign yi to class

k of the c possible classes, then the discriminant value fk
for each class is evaluated from the following equation:

fk = µkΣ
−1yTi −

1

2
µkΣ

−1
µ
T
k + log(πk) (4)

where T represents the transpose and µk is the row mean

vector obtained from the whole Nk training vectors belonged

to the class k. In order to evaluate µk let N be the total

number of yi in the training set , then µk is obtained by:

µk =
1

Nk

Nk
∑

i=1

yik (5)

For an LD classifier Σ represents the pooled covariance

and its is evaluated as:

Σ =
1

N − c

c
∑

k=1

Nk
∑

i=1

(yik − µk)
T (xik − µk) (6)

Finally, πk represent the prior probability that yi belongs

to a class k. A practical way to evaluate πk is :

πk =
Nk

N
(7)

However, it is possible to eliminate this term of the the

discriminant equation if yi has the same probability for all

classes. Finally yi is assigned to the class, k with higher fk.

F. Features selection

For training the classifier, a total of 268 DAP events were

extracted. These DAP events were clustered in two groups:

apneic DAPs (Ga) and non apneic DAPs (Gn) based on the

physiology of apneic events. DAP events were classified into

Ga when SaO2 decreases at least 3% or airflow decreases at

least 50% respect to the baseline for a minimum duration of

5 seconds and into Gn when DAP event is not correlated to

neither airflow reduction nor SaO2 decrement. A summary

of the clustering is presented in Table I.

TABLE I

CLUSTERING OF DAP EVENTS

Clinical DAP group
Diagnosis Ga Gn Total

Normal 41 107 148
Pathologic 98 22 120

Total 139 129 268

Feature selection can be addressed in different ways,

wrap method is the one used in this work, it consists in

selecting the features based on the classifier performance by

adding gradually one more feature and selecting the one,

in combination with the features selected previously, which

provides the highest classification accuracy.

G. Clinical Study

To evaluate the improvement of adding HRV information

for OSAS diagnosis based on PPG, a clinical study was

carried out. Complete night PSG recordings were split into

1-hour length fragments. These one hour PSG fragments

were labeled as control, doubt or pathologic based on SaO2
desaturation in order to later being able to evaluate the

classifier accuracy for these fragments. To establish this

separation, a baseline level β, corresponding to the SaO2
signal mode of the entire night recording, was considered.

In all recordings β ≥ 97% and the probability of this mode

value was higher than 0.3 from a bin resolution of 1%. Total

time intervals with SaO2 signal below β − 3%, tβ−3, was

calculated for each fragment. PSG fragments were classified

according to the following criteria:

tβ−3 < 0.9 minutes control

0.9 minutes < tβ−3 < 3 minutes doubt

tβ−3 > 3 minutes pathologic

(8)

This imply a minimum of 5% of the time with evident

oxygen desaturation to be consider as pathologic, which

corresponds to a severe OSAS criteria of 18 apneas/hour

having a mean duration of 10 seconds. For control group the

threshold corresponds to 5 apneas/hour. Table II shows the

classification for PSG fragments.

Now the objective is to classify these one hour fragments

based on the DAP per hour ratio. This classification will

be done both just with the DAP coming from the DAP

detector in section II-B, rDAP, and with those classified as

apneic DAP events with the methodology presented in II-E,

ra
DAP

. ROC curves were calculated for both indexes and the

optimum thresholds in terms of maximizing sensitivity Se

and specificity Sp were established. In addition, Wilcoxon

non parametric statistical analysis was carried out for both

indexes in order to evaluate their discriminant power between

groups.

Since we are interested in having a label attached to a

patient, we need a rule to determine when a patient with

a given number of pathological fragments is considered as

TABLE II

PSG FRAGMENTS CLASSIFICATION

Clinical PSG fragments classification
diagnosis # subjects # fragments # normal # doubt # pathologic

Normal 10 46 42 4 0

Pathologic 11 59 28 20 11

Total 21 105 70 24 11
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pathologic subject. For that, the percentage of time under

pathologic fragments based on rDAP and ra
DAP

was analysed.

The threshold for this percentage was selected for maximiz-

ing Se and Sp. From the total of 21 children, six subject were

excluded because only less than 4 hours had ECG and PPG

signals of acceptable quality, so 15 registers were included in

this study corresponding to 8 OSAS and 7 normal according

to clinical diagnosis.

III. RESULTS

The best features for classification obtained by the wrap

method were: the mean of normalized HF within global

window (P
wg
HFn

), the mean of the LF/HF ratio within global

window (R
wg
LF/HF

), the variance of the dIIF signal within DAP

event window (σdwd
IIFn

) and the difference of the mean of the

dIIF within reference window with respect to DAP window

(∆dIIF

wr−wd
n ). Results about PSG fragments and subject

classification are shown in Table III. The inclusion of HRV

information improves the PSG fragments classification accu-

racy in 12.3% reaching at values of 72.7% and 80% for sensi-

tivity and specificity, respectively. In addition, the Wilcoxon

statistic analysis shows a higher discriminant power between

pathologic and normal for ra
DAP

(p = 0.0061) than for rDAP

(p = 0.0225). ROC curves in Fig. 3, varying thresholds in

rDAP and ra
DAP

, demonstrate the advantage of including HRV

information. As for subject classification, the improvement

in accuracy is 6.7% obtaining values of 87.5% and 71.4%
for sensitivity and specificity respectively.

IV. DISCUSSION AND CONCLUSIONS

Photopletysmography signal carries information related to

the cardiovascular function as well as blood gasses con-

centration. This signal presents interesting characteristics

that can be used to detect apneic episodes. However, its

high sensibility could produce misdetections and overes-

timate apneic episodes. Generally, in most of the studies

PPG has been directly related with the cardiac function

given as results a measure of the Pulse Transition Time

(PTT) [12]. PTT gives a quantitative measure of the time

TABLE III

PSG FRAGMENTS CLASSIFICATION RESULTS

PSG Fragments classification Subjects classification
Index S (%) Sp (%) Accuracy (%) S (%) Sp (%) Accuracy (%)

rDAP 81.8 64.3 66.7 75 71.4 73.3

raDAP 72.7 80 79 87.5 71.4 80

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1-Sp

S
e

Fig. 3. ROC curves for rDAP (dashed line) and raDAP (solid line).

that a pulse wave needs for passing from one arterial to

another one. OSAS produces a PTT decrement because the

sympathetic activation produces heart rate increment, higher

stroke volume and vasoconstriction, which in turn, generate

pulse wave acceleration. However, some other physiological

events such as slow paced breathing and deep inspiratory

gasp [13] induce also variation in the PTT that could be

confused with sympathetic activations. However, this inte-

gration looses important information that could be obtained

from the spectral parameters of heart rate. Dynamic of heart

rate and its spectral parameters offer time and frequency

information that discriminates between small cardiovascular

variation and more severe ones, like when an apneic episode

occurs. However, when only spectral parameters are used to

discriminate apnea, spectral parameters loss sensibility since

there is not a pre-screening of the potential apneic events

as the DAP detection provides, improving the sensitivity

and specificity values. In conclusion HRV analysis improve

the utility of PPG signal in sleep disorder diagnosis so the

combination of DAP and HRV could be an alternative for

sleep apnea screening with the added benefit of low cost

and simplicity. Nevertheless, extended studies are needed to

corroborate the potential of PPG signal in conjunction with

HRV analysis in diagnosing sleep disorders.
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